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Question 1 
To be honest, the binomial expansions of  (1  x)n, in the cases n = 1, 2, are used so frequently within AS- 
and A-levels that they should be familiar to all candidates taking STEPs. Replacing x by xk is no great 
further leap. 
 

The general term in   261


 x  is easily seen to be  (n + 1) x6n and the x24 term in    261


 x   131


 x  comes 
from  1.x24 +  2x6.x18  + 3x12.x12 + 4x18.x6  + 5x24.1, so that the coefficient of x24 is 1 + 2 + 3 + 4 + 5 = 15, 
arising from a sum of triangular numbers. Thus, the coefficient of xn is 
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which is most easily described without using n directly, as here. 
 
In (ii), f(x) =    ...1...1...54321 329632418126  xxxxxxxxxx   and the x24 term 
comes from 
 

  1.1.5x24 +  1.x6.4x18  + 1.x12.3x12 + 1.x18.2x6  + 1.x24.1   

     + x3.x3.4x18 + x3.x9.3x12 + x3.x15.2x6 + x3.x21.1 
 

     + x6.1.4x18  + x6.x6.3x12 + x6.x12.2x6 + x6.x18.1 
 

                        + x9.x3.3x12 + x9.x9.2x6  + x9.x15.1  
 

                        + x12.1.3x12 + x12.x6.2x6 + x12.x12.1 
 

                                           + x15.x3.2x6 + x15.x9.1 
 

                                           + x18.1.2x6  + x18.x6.1  
 

                                                              + x21.x3.1 
 

                                                              + x24.1.1 
giving the coefficient of x24 as 15 + 2  (10 + 6 + 3 + 1) = 55. 
 
However, there are lots of ways to go about doing this. For instance ... 
Note that, because every non-multiple-of-3 power in bracket 3 is redundant, the x24 term comes from 

considering   f(x) =     2326 11


 xx  =   ...4321...54321 9632418126  xxxxxxx .  
 

Again, every non-multiple-of-6 power in this 2nd bracket is also redundant, so one might consider only 
 

f(x) =   ...54321...97531 24181262418126  xxxxxxxx  

from which the coefficient of x24 is simply calculated as 1  5 + 3  4 + 5  3 + 7  2 + 9  1 = 55. This 
result, in some form or another, gives the way of working out the coefficient of x6n for any non-negative 

integer n.  It is immediately obvious that it is  
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nnnr .The proof of this result could be by induction or direct manipulation of the 

standard results for r and r2.  
 
The coefft. of x25 is 55, the same as for x24, since the extra x only arises from replacing 1 by x,  x3 by x4, 
etc., in the first bracket’s term (at each step of the working) and the coefficients are equal in each case. 
      
In the case when n = 11, the coefficient of x66 is 12  1 + 11  3 + 10  5 + … + 2  21 + 1  23 = 650. 
         



Question 2 
Firstly,  )(qp x  has degree mn.      
 
(i) Deg[p(x)]  = n    Deg[p(p(x))] = n2  &  Deg[p(p(p(x)))] = n3.  
Deg[LHS]   max  nn  ,3  while RHS is of degree 1. Therefore the LHS is not constant so  n = 1  and p(x) 

is linear. Setting  p(x) = ax + b    p(p(x)) = a(ax + b) + b = a2x + (a + 1)b  and       
   p(p(p(x)))  = a[a2x + (a + 1)b] + b = a3x + (a2 + a + 1)b.   

Then  a3x + (a2 + a + 1)b – 3ax – 3b + 2x  0    (a3 – 3a + 2)x + (a2 + a – 2)b  0  
          (a – 1)(a2 + a – 2)x + (a2 + a – 2)b  0   

    (a2 + a – 2)[(a – 1)x + b]  0 
    (a + 2)(a – 1)[(a – 1)x + b]  0 

We have, then, that  a = –2 or 1. In either case, b takes any (arbitrary) value and the solutions are thus    
p1(x) = –2x + b   and  p2(x) = x + b. 

 
(ii) Deg[RHS] = 4  while  Deg[LHS]  max  nnn  ,2 ,2 , so it follows that  n = 2  and  p(x)  is quadratic.  
Setting  p(x) = ax2 + bx + c, we have       

   2p(p(x)) = 2a(ax2 + bx + c)2 + 2b(ax2 + bx + c) + 2c   
       = 2a 2222342 222 cbcxxbacxabxxa   + 2b(ax2 + bx + c) + 2c 

   2)(3 xp   =   222342 2223 cbcxxbacabxxa    and  –4p(x)  = – 4ax2 – 4bx – 4c. 

Thus, LHS =       222232423 4632426432 xaacbabcaabxabbaxaa   

+    cccbcacxbbcbabc 432224624 222  , 
while the RHS = x4. 
Equating terms gives         
 x4 )              2a3 +3a2 – 1 = 0    )12()1( 2  aa    a = –1 or 2

1     

 x3 )                2ab(2a + 3) = 0   b = 0      
 x2 )        2a(2ac + 3c – 2) = 0   c = 2  when  a = –1; i.e.  p1(x) = – x2 + 2    

         OR  c = 2
1   when  a = 2

1 ; i.e. p2(x) =  12
2
1 x . 

Note that there are two sets of conditions yet to be used, so the results obtained need to be checked 
(visibly) for consistency: 
 x1 )  2b(2ac + b + 3c – 2) = 0  checks     and     x0 )          c(2ac + 3c – 2) = 0  checks also.   
 
 
Question 3 

It helps greatly to begin with, to note that if xxt  12 , then  xx
t
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For the first integral, I1 =  
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In the case of the second integral, the substitution x = tan     dx = sec2 d . Also sec1 2  x  and 
the required change of limits yields      ,0 ,0 2

1 . We then have 

I2 = 
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We now note, matching this up with the initial result, that we are using f(t) = 
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, so that 
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Question 4 
 (i) This first result is easily established: For n, k > 1,  nk + 1 > nk   and  k + 1 > k  so  kk nknk  1)1(   
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    (since all terms are positive). 
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  (a result which is valid since  0 < 1
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   since each bracketed term is positive, using
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the previous result. Exponentiating then gives n
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(ii) A bit of preliminary log. work enables us to use the ln(1 + x) result on    
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    (since all terms after the first are positive). 

Again, note that we should justify that the series is valid for  0 < 1
2
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  i.e.  y > 2

1   in order to justify the 

use of the given series. It then follows that  
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(iii) This final part only required a fairly informal argument, but the details still required a little bit of care  
in order to avoid being too vague.  

As n  , 
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1  from above and e is squeezed  

into the same limit from both above and below.  
 
 
Question 5 
With any curve-sketching question of this kind, it is important to grasp those features that are important 
and ignore those that aren’t. For instance, throughout this question, the position of the y-axis is entirely 
immaterial: it could be drawn through any branch of the curves in question or, indeed, appear as an 

asymptote. So the usually key detail of the y-intercept, at 
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2a
 in part (i), does not help decide 

what the function is up to. The asymptotes, turning points (clearly important in part (ii) since they are 
specifically requested), and any symmetries are important. The other key features to decide upon are the 
“short-term” (when x is small) and the “long-term” (as x   ) behaviours. 
 
In (i), there are vertical asymptotes at  x = a – 1  and  x = a + 1; while the x-axis is a horizontal asymptote. 
There is symmetry in the line  x = a (a consequence of which is the maximum TP in the “middle” branch) 

and the “long-term” behaviour of the curve is that it ultimately resembles the graph of  y = 
2

1

x
. 

 
 (ii) Differentiating the function in (ii) gives 

        1)()(1)()(
1)(1)(
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 bxaxaxbx

bxax
x  

and setting the numerator = 0        0))((  bxaxbxaxbxax . Factorising yields   

(2x – a – b)   0)1()(2  abxbax , so that )(2
1 bax  or  

2

44)( 2  abbaba
.  

 
In the first case, where  b > a + 2  (i.e.  a + 1 < b – 1), there are five branches of the curve, with 4 vertical 
asymptotes: x = a  1  and  x = b  1. As the function changes sign as it “crosses” each asymptote, and the 

“long-term” behaviour is still to resemble  y = 
2

1

x
, these branches alternate above and below the x-axis, 

with symmetry in )(2
1 bax  . 

 
In the second case, where b = a + 2  (i.e.  a + 1 = b – 1), the very middle section has collapsed, leaving 
only the four branches, but the curve is otherwise essentially unchanged from the previous case. 
 
 
Question 6 

       A   A quick diagram helps here, leading to the important observation, from the 
           GCSE geometry result “opposite angles of a cyclic quad. add to 180o”, that 

       b  BCD = 180o –  . Then, using the Cosine Rule twice (and noting that 
         a            cos(180o – ) = – cos ): 

     D in BAD: BD2 = a2 + d 2 – 2ad cos  
B    in BCD: BD2 = b2 + c2 + 2bc cos    

           b         c  Equating for BD2 and re-arranging gives cos  = 
)(2

2222

bcad

dcba




        

      C      



Next, the well-known formula for triangle area, Cabsin2
1 , twice, gives  Q =  sinsin 2

1
2
1 bcad  , 

since  sin( – ) = sin . Rearranging then gives  sin  = 
bcad

Q


2

 or  
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 .   

Use of  sin2 + cos2  = 1    
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 = 1  and this then gives the printed 

result, 216Q =    2222224 dcbabcad  . 
 
Then, 216Q =   22222222 2222 dcbabcaddcbabcad   by  the difference-of-two-
squares factorisation 
 

                 =   2222 ][][][][ cbdadacb   

       =     ][][][][][][][][ cbdacbdadacbdacb   
using the difference-of-two-squares factorisation in each large bracket 
         =     cdbabdcadcbaadcb  . 
Splitting the 16 into four 2’s (one per bracket) and using  2s = a + b + c + d 
 

  Q2 = 
       

))()()((
2

22

2

22

2

22

2

22
dscsbsas

dscsbsas



. 

Finally, for a triangle (guaranteed cyclic), letting  d  0 (Or  s – d  s  Or  let D  A), we get the result 

known as Heron’s Formula:   = ))()(( csbsass  . 

 
 
Question 7 
Many of you will know that this point G, used here, is the centroid of the triangle, and has position vector  
g =  3213

1 xxx  .  

Then  3213
1

11 2 xxxgx GX  and so   32113
1

1 2 xxx  GY ,  where  1 > 0.  

Also    32113
1

3213
1

11 2 xxxxxx  GYOGOY  )](1[]21[ 32113
1 xxx   , the first 

printed result.   
 
The really critical observation here is that the circle centre O, radius 1 has equation  | x |2 = 1  or  x . x = 1, 
where x can be the p.v. of any point on the circle.   

Thus, since 111 OYOY , we have  
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Similarly, 
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Question 8 
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 is constant (independent of n). Calling 

this constant p gives  01  1    nnn upuu , as required. In order to determine p, we only need to use the 

fact that  p = 
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 for all n, so we choose the first few terms to work with. 
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Alternatively,  u2 =   = 
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since  022  q  as u2 non-zero (given). Since p is consistent for any chosen , , the proof follows 
inductively on any two consecutive terms of the sequence.  
 
Finally, on to the given cases. 

If   >  + q,  1  
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1  1  1)1(  
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       > 1)12(  nn uu   by the initial result  

       > 1 nn uu  

Hence, if  1   nn uu  > 0  then so is  nn uu 1  . Since   > ,  012  uu   and proof follows inductively. 

  



 If   =  + q   then  p = 2  and  1  1    nnnn uuuu   so that the sequence is an AP. 

Also,  u0 =  ,  u1 =  + q,  u2 =  + 2q, …  the common difference is q (and we still have a strictly 
increasing sequence, since q > 0 given). 
 
 
Question 9 
In the standard way, we use the constant-acceleration formulae to get   

x = ut cos  and  y = 2h – ut sin – 2
1 gt2 . 

When x = a, 
cosu

a
t  . Substituting this into the equation for y     2
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u
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ahy  .  

As y > h at this point (the ball, assuming it to be “a particle”, is above the net), we get 
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 , as required. 

 
For the next part, we set y = 0 in y = 2h – ut sin – 2

1 gt2  and solve as a quadratic in t to get 

g
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 ... (the positive root is required). 

Setting  x = (u cos )t  and noting that x < b ,  b
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There are several ways to proceed from here, but this is (perhaps) the most straightforward. 

Squaring     22
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Cancelling  22 sinu  both sides & dividing by g    
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Re-arranging for   
2

1

u
    

222

1

sec

)tan2(2

ugb

bh






 

Using the first result, 
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 , in here    
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Re-arranging for  tan      22 2tan)( abhabab   , which leads to the required final answer 

 
)(

2
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22
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  . However, it is necessary (since we might otherwise be dividing by a quantity that 

could be negative) to explain that  b > a  (we are now on the other side of the net to the projection point) 
else the direction of the inequality would reverse. 
    
 
 
 
 
 
 
 
 
 
 
 



Question 10  
As with many statics problems, a good diagram is essential to successful progress. Then there are 
relatively few mechanical principles to be applied ... resolving (twice), taking moments, and the standard 
“Friction Law”. It is, of course, also important to get the angles right.     
 
 
       Taking moments about M :   
              R1      F2      R1 a sin  = R2 a sin + F1 a cos + F2 a cos   
              
       Using the Friction Law :  F1 =  R1   and   F2 =  R2 
        
    R2            O    Dividing by cos  and re-arranging 
      r       R1 tan  = R2 tan +  R1  +  R2   
            B   (R1 – R2) tan  =  (R1 + R2) 
   r          a      
        
        a           M     
               
            A           
       
        
        F1             W (or mg)                    
 
For the second part, it seems likely that we will have to resolve twice (not having yet used this particular 
set of tools), though we could take moments about some other point in place of one resolution. There is 
also the question of which directions to resolve in – here, it should be clear very quickly that “horizontally 
and vertically” will only yield some very messy results. 
 
Moments about O :   (R1 – R2) r = W r sin sin    
Resolving // AB :  (R1 – R2) cos +  (R1 + R2) sin = W sin   
(Give one A1 here if all correct apart from a – sign) 
Resolving r AB :  (R1 + R2) sin  –  (R1 – R2) cos = W cos   
Note that only two of these are actually required, but it may be easier to write them all down first and then 
decide which two are best used. 

Dividing these last two eqns.    
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Using first result,   (R1 + R2) = (R1 – R2) tan     








cos)(sin
tan

)(

sintan)(cos)(
tan

2121

2121

RRRR

RRRR




  

  






cossin

tan
sintancos

tan



 . (There is no need to note that  R1 ≠  R2 for then the rod would hve to be 

positioned symmetrically in the cylinder.) 

Multiplying throughout by  cos     
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Finally,  tantan
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Question 11 
Again, a diagram is really useful for helping put ones thoughts in order; also, we are going to have to 
consider what is going on generally (and not just “pattern-spot” our way up the line). 
 
 
 
 
 
 
 
 
               
 

 
Using the principle of Conservation of Linear Momentum, 
CLM  m u + M Vi – 1 = (M + im) Vi    (NB V0 = 0) leads to  
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Alternatively, CLM  for all particles gives   mVnnk
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and rearranging for V = Vn  yields 
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The last collision occurs when Vn  
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Now, the total KE of all the  Pi ’s  is  
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Therefore, the loss in KE is the difference: 
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Before i th collision 
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After i th collision 
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Question 12 
This can be broken down into more (four) separate cases, but there is no need to: 
P(light on) = p  4

3  2
1  + (1 – p)  4

1  2
1 = )21(8

1 p , and then the conditional probability 

P(Hall | on) = 
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. 

 
To make progress with this next part of the question, it is important to recognise the underlying binomial 
distribution, and that each day represents one such (Bernouilli) trial. We are thus dealing with B(7, p1), 

where p1 = 
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p




 is the previously given answer. 

 
For the modal value to be 3, we must have P(2) < P(3) < P(4); that is, 
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Using  p1 = 
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Question 13 
Working with the distribution Po( = ky2),  P(no supermarkets) = 

2 e yk   and  P(Y < y) = 1 – 
2 e yk .  

Differentiating w.r.t. y to find the pdf of Y    f(y) = 
2 e  2 ykykπ  , as given. Then 

E(Y) = 
2

0

 e  2 2 ykykπ 


dy . Using Integration by Parts and writing  
2 e  2 2 ykykπ  as 





  2 e  2 ykykπy    

gives E(Y) = 



 









0

2 e yky  2

0

 e yk


dy  = 0 + 
2

0

 e yk


dy. It is useful (but not essential) to use the 

simplifying substitution  x = ky 2  at this stage to get  
2

0

2
1 

  
2

1
e

x

k






dx  = 

kk 2

1

2
  

2

1





  (by the 

given result, relating to the standard normal distribution’s pdf, at the very beginning of the question). 

Next, E(Y 2) = 
2

0

 e  2 3 ykykπ 


dy , and using Integration by Parts and, in a similar way to earlier,  

writing  
2 e  2 3 ykykπ   as  





  2 e  2 2 ykykπy  ,  E(Y 2) = 



 









0

2 e 2 yky  2

0

 e 2 yky 


dy     

= 0 + 
2

0

 e  2
1 ykyk

k







 = 
0

2   
1

e










 yk

k




  (using a previous result, or by substitution) = 

k

1
 

 

  Var(Y) = 



 kkk 4

4

4

11 
  , the given answer, as required. 


